2 research outputs found

    Prevention of cyberattacks in WSN and packet drop by CI framework and information processing protocol using AI and Big Data

    Full text link
    As the reliance on wireless sensor networks (WSNs) rises in numerous sectors, cyberattack prevention and data transmission integrity become essential problems. This study provides a complete framework to handle these difficulties by integrating a cognitive intelligence (CI) framework, an information processing protocol, and sophisticated artificial intelligence (AI) and big data analytics approaches. The CI architecture is intended to improve WSN security by dynamically reacting to an evolving threat scenario. It employs artificial intelligence algorithms to continuously monitor and analyze network behavior, identifying and mitigating any intrusions in real time. Anomaly detection algorithms are also included in the framework to identify packet drop instances caused by attacks or network congestion. To support the CI architecture, an information processing protocol focusing on efficient and secure data transfer within the WSN is introduced. To protect data integrity and prevent unwanted access, this protocol includes encryption and authentication techniques. Furthermore, it enhances the routing process with the use of AI and big data approaches, providing reliable and timely packet delivery. Extensive simulations and tests are carried out to assess the efficiency of the suggested framework. The findings show that it is capable of detecting and preventing several forms of assaults, including as denial-of-service (DoS) attacks, node compromise, and data tampering. Furthermore, the framework is highly resilient to packet drop occurrences, which improves the WSN's overall reliability and performanc

    Undecimated Wavelet Transform for Word Embedded Semantic Marginal Autoencoder in Security improvement and Denoising different Languages

    Full text link
    By combining the undecimated wavelet transform within a Word Embedded Semantic Marginal Autoencoder (WESMA), this research study provides a novel strategy for improving security measures and denoising multiple languages. The incorporation of these strategies is intended to address the issues of robustness, privacy, and multilingualism in data processing applications. The undecimated wavelet transform is used as a feature extraction tool to identify prominent language patterns and structural qualities in the input data. The proposed system may successfully capture significant information while preserving the temporal and geographical links within the data by employing this transform. This improves security measures by increasing the system's ability to detect abnormalities, discover hidden patterns, and distinguish between legitimate content and dangerous threats. The Word Embedded Semantic Marginal Autoencoder also functions as an intelligent framework for dimensionality and noise reduction. The autoencoder effectively learns the underlying semantics of the data and reduces noise components by exploiting word embeddings and semantic context. As a result, data quality and accuracy are increased in following processing stages. The suggested methodology is tested using a diversified dataset that includes several languages and security scenarios. The experimental results show that the proposed approach is effective in attaining security enhancement and denoising capabilities across multiple languages. The system is strong in dealing with linguistic variances, producing consistent outcomes regardless of the language used. Furthermore, incorporating the undecimated wavelet transform considerably improves the system's ability to efficiently address complex security concern
    corecore